Minigroupwork 5, solutions, 2014

$j_{z}=-\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y}$

Current sheet 1:

$\frac{\partial B_{x}}{\partial y}<0 \Rightarrow j_{z}>0$ which means it is an upward current, which is consistent with the statistical result.
$\Delta B_{x} \approx \frac{15 \mathrm{~mm}}{22 \mathrm{~mm}} \cdot 1000 \cdot 10^{-9}=6.8 \cdot 10^{-7} \mathrm{~T}$
$\Delta y \approx \frac{10 \mathrm{~mm}}{10 \mathrm{~mm}} \cdot \frac{2^{\circ}}{360^{\circ}} 2 \pi\left(R_{E}+800 \mathrm{~km}\right)=250 \cdot 10^{3} \mathrm{~m}$
Then
$j_{z} \approx-\frac{1}{\mu_{0}} \frac{\Delta B_{x}}{\Delta y}=2.2 \cdot 10^{-6} \mathrm{Am}^{-2}$

Current sheet 2

$\frac{\partial B_{x}}{\partial y}>0 \Rightarrow j_{z}<0$ which means it is an downward current, which is consistent with the statistical result.
$\Delta B_{x} \approx \frac{18 \mathrm{~mm}}{22 \mathrm{~mm}} \cdot 1000 \cdot 10^{-9}=8.2 \cdot 10^{-7} \mathrm{~T}$
$\Delta y \approx \frac{10 \mathrm{~mm}}{10 \mathrm{~mm}} \cdot \frac{2^{\circ}}{360^{\circ}} 2 \pi\left(R_{E}+800 \mathrm{~km}\right)=250 \cdot 10^{3} \mathrm{~m}$
Then
$j_{z} \approx-\frac{1}{\mu_{0}} \frac{\Delta B_{x}}{\Delta y}=-2.6 \cdot 10^{-6} \mathrm{Am}^{-2}$

